

Practical Neural Network Design Using Reinforcement Learning

Bowen Baker Media Lab bowen@mit.edu

Co-authors

Otkrist Gupta MIT Media Lab

Nikhil Naik Harvard

Ramesh Raskar MIT Media Lab

Motivation

Neural network design is still hand crafted.

Motivation

- Neural network design is still hand crafted.
- Despite the wide usage of a few main networks, we may want networks specialized for specific tasks.

Motivation

- Neural network design is still hand crafted.
- Despite the wide usage of a few main networks, we may want networks specialized for specific tasks.
- We may want more than 1 specialized model,
 e.g. for the ensembling purposes.

Automating Tasks With Reinforcement Learning

Outline

- Modeling Architecture Selection as a Markov Decision Process
- 2. Reinforcement Learning Background
- 3. Results with Q-Learning
- 4. Accelerating Architecture Selection with Simple Early Stopping Algorithms

 C(64,3,1) – Convolutional Layer with 64 learnable kernels, 3x3 kernel size, and stride of 1

- C(64,3,1) Convolutional Layer with 64 learnable kernels, 3x3 kernel size, and stride of 1
- P(2,2) Max Pooling Layer with 2x2 kernel size and stride 2

- C(64,3,1) Convolutional Layer with 64 learnable kernels, 3x3 kernel size, and stride of 1
- P(2,2) Max Pooling Layer with 2x2 kernel size and stride 2
- G Termination State (e.g. Softmax)

Q-Learning

 $Q^*(s,u)$ -- Denotes the expected reward when following an optimal policy after taking action u at state s

Q-Learning

$$Q^*(s_i, u) = \mathbb{E}\left[r + \gamma \max_{u' \in \mathcal{U}(s_j)} Q^*(s_j, u')\right]$$

 γ -- Discount Factor

r -- Reward received from the (s_i, u, s_j) transition

Q-Learning

$$Q^*(s_i, u) = \mathbb{E}\left[r + \gamma \max_{u' \in \mathcal{U}(s_j)} Q^*(s_j, u')\right]$$

$$Q_{t+1}(s_i, u) = (1 - \alpha)Q_t(s_i, u) + \alpha \left[r_t + \gamma \max_{u' \in \mathcal{U}(s_j)} Q_t(s_j, u') \right]$$

$$Q_{t+1}(s_i, u) = (1 - \alpha)Q_t(s_i, u) + \alpha \left[r_t + \gamma \max_{u' \in \mathcal{U}(s_j)} Q_t(s_j, u') \right], \quad \gamma = 1, \quad \alpha = 0.1$$

$$Q_{t+1}(s_i, u) = (1 - \alpha)Q_t(s_i, u) + \alpha \left[r_t + \gamma \max_{u' \in \mathcal{U}(s_j)} Q_t(s_j, u') \right], \quad \gamma = 1, \quad \alpha = 0.1$$

$$Q_{t+1}(s_i, u) = (1 - \alpha)Q_t(s_i, u) + \alpha \left[r_t + \gamma \max_{u' \in \mathcal{U}(s_j)} Q_t(s_j, u') \right], \quad \gamma = 1, \quad \alpha = 0.1$$

$$Q_{t+1}(s_i, u) = (1 - \alpha)Q_t(s_i, u) + \alpha \left[r_t + \gamma \max_{u' \in \mathcal{U}(s_j)} Q_t(s_j, u') \right], \quad \gamma = 1, \quad \alpha = 0.1$$

MetaQNN

MetaQNN

MetaQNN

Sampling Networks

Epsilon-Greedy Exploration:

- State s corresponds the last layer chosen
- Action u corresponds to the next layer chosen

$$u = \begin{cases} \operatorname{Uniform}[\mathcal{U}(s)] & \text{with probability } \epsilon \\ \operatorname{arg} \max_{u' \in \mathcal{U}(s)}[Q(s, u')] & \text{with probability } 1 - \epsilon \end{cases}$$

Sampling Networks

Epsilon-Greedy Exploration:

- State s corresponds the last layer chosen
- Action u corresponds to the next layer chosen

$$u = \begin{cases} \operatorname{Uniform}[\mathcal{U}(s)] & \text{with probability } \epsilon \\ \operatorname{arg} \max_{u' \in \mathcal{U}(s)}[Q(s, u')] & \text{with probability } 1 - \epsilon \end{cases}$$

ϵ	1	l			1	l	l	I	ı	0.1
# Models Trained	1500	100	100	100	150	150	150	150	150	150

Layer Type	Layer Parameters	Parameter Values
	$i \sim$ Layer depth	< 12
	$f \sim$ Receptive field size	Square. $\in \{1, 3, 5\}$
Convolution (C)	$\ell \sim$ Stride	Square. Always equal to 1
	$d\sim$ # receptive fields	$\in \{64, 128, 256, 512\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4], (4, 1]\}$
	$i \sim$ Layer depth	< 12
Pooling (P)	$(f,\ell) \sim$ (Receptive field size, Strides)	Square. $\in \{(5,3), (3,2), (2,2)\}\$ $\in \{(\infty,8], (8,4] \text{ and } (4,1]\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4] \text{ and } (4, 1]\}$
	$i \sim$ Layer depth	< 12
Fully Connected (FC)	$n \sim$ # consecutive FC layers	< 3
-	$d\sim$ # neurons	$\in \{512, 256, 128\}$
Termination State	$s \sim$ Previous State	
Termination State	$t \sim Type$	Global Avg. Pooling/Softmax

Layer Type	Layer Parameters	Parameter Values
	$i \sim$ Layer depth	< 12
	$f \sim$ Receptive field size	Square. $\in \{1, 3, 5\}$
Convolution (C)	$\ell \sim$ Stride	Square. Always equal to 1
	$d\sim$ # receptive fields	$\in \{64, 128, 256, 512\}$
	$n \sim \text{Representation size}$	$\in \{(\infty, 8], (8, 4], (4, 1]\}$
	$i \sim$ Layer depth	< 12
Pooling (P)	$(f,\ell) \sim (\text{Receptive field size, Strides})$	Square. $\in \{(5,3),(3,2),(2,2)\}$
	$n \sim$ Representation size	Square. $\in \{(5,3), (3,2), (2,2)\}\$ $\in \{(\infty,8], (8,4] \text{ and } (4,1]\}$
	$i \sim$ Layer depth	< 12
Fully Connected (FC)	$n \sim$ # consecutive FC layers	< 3
	$d\sim$ # neurons	$\in \{512, 256, 128\}$
Termination State	$s \sim$ Previous State	
	$t \sim ext{Type}$	Global Avg. Pooling/Softmax

Layer Type	Layer Parameters	Parameter Values
	$i \sim \text{Layer depth}$	< 12
	$f \sim$ Receptive field size	Square. $\in \{1, 3, 5\}$
Convolution (C)	$\ell \sim ext{Stride}$	Square. Always equal to 1
	$d\sim$ # receptive fields	$\in \{64, 128, 256, 512\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4], (4, 1]\}$
	$i \sim$ Layer depth	< 12
Pooling (P)	$(f,\ell) \sim (\text{Receptive field size, Strides})$	Square. $\in \{(5,3), (3,2), (2,2)\}\$ $\in \{(\infty,8], (8,4] \text{ and } (4,1]\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4] \text{ and } (4, 1]\}$
	$i \sim ext{Layer depth}$	< 12
Fully Connected (FC)	$n \sim$ # consecutive FC layers	< 3
	$d\sim$ # neurons	$\in \{512, 256, 128\}$
Termination State	$s \sim$ Previous State	
Termination State	$t \sim ext{Type}$	Global Avg. Pooling/Softmax

Layer Type	Layer Parameters	Parameter Values
	$i \sim \text{Layer depth}$	< 12
	$f \sim$ Receptive field size	Square. $\in \{1, 3, 5\}$
Convolution (C)	$\ell \sim$ Stride	Square. Always equal to 1
	$d\sim$ # receptive fields	$\in \{64, 128, 256, 512\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4], (4, 1]\}$
	$i \sim$ Layer depth	< 12
Pooling (P)	$(f,\ell) \sim (\text{Receptive field size, Strides})$	Square. $\in \{(5,3), (3,2), (2,2)\}\$ $\in \{(\infty,8], (8,4] \text{ and } (4,1]\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4] \text{ and } (4, 1]\}$
	$i \sim ext{Layer depth}$	< 12
Fully Connected (FC)	$n \sim$ # consecutive FC layers	< 3
	$d\sim$ # neurons	$\in \{512, 256, 128\}$
Termination State	$s \sim \text{Previous State}$	
Termination State	$t \sim Type$	Global Avg. Pooling/Softmax

Layer Type	Layer Parameters	Parameter Values
	$i \sim$ Layer depth	< 12
	$f \sim$ Receptive field size	Square. $\in \{1, 3, 5\}$
Convolution (C)	$\ell \sim$ Stride	Square. Always equal to 1
	$d \sim$ # receptive fields	$\in \{64, 128, 256, 512\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4], (4, 1]\}$
	$i \sim$ Layer depth	< 12
Pooling (P)	$(f,\ell) \sim (\text{Receptive field size, Strides})$	Square. $\in \{(5,3), (3,2), (2,2)\}\$ $\in \{(\infty,8], (8,4] \text{ and } (4,1]\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4] \text{ and } (4, 1]\}$
	$i \sim ext{Layer depth}$	< 12
Fully Connected (FC)	$n \sim$ # consecutive FC layers	< 3
	$d\sim$ # neurons	$\in \{512, 256, 128\}$
Termination State	$s \sim \text{Previous State}$	
Termination State	$t \sim Type$	Global Avg. Pooling/Softmax

Layer Type	Layer Parameters	Parameter Values
	$i \sim \text{Layer depth}$	< 12
	$f \sim$ Receptive field size	Square. $\in \{1, 3, 5\}$
Convolution (C)	$\ell \sim$ Stride	Square. Always equal to 1
	$d \sim$ # receptive fields	$\in \{64, 128, 256, 512\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4], (4, 1]\}$
	$i \sim$ Layer depth	< 12
Pooling (P)	$(f, \ell) \sim (\text{Receptive field size, Strides})$	Square. $\in \{(5,3), (3,2), (2,2)\}\$ $\in \{(\infty,8], (8,4] \text{ and } (4,1]\}$
	$n \sim \text{Representation size}$	$\in \{(\infty, 8], (8, 4] \text{ and } (4, 1]\}$
	$i \sim ext{Layer depth}$	< 12
Fully Connected (FC)	$n \sim$ # consecutive FC layers	< 3
	$d\sim$ # neurons	$\in \{512, 256, 128\}$
Termination State	$s \sim$ Previous State	
Termination State	$t \sim Type$	Global Avg. Pooling/Softmax

Layer Type	Layer Parameters	Parameter Values
	$i \sim \text{Layer depth}$	< 12
	$f \sim$ Receptive field size	Square. $\in \{1, 3, 5\}$
Convolution (C)	$\ell \sim$ Stride	Square. Always equal to 1
	$d\sim$ # receptive fields	$\in \{64, 128, 256, 512\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4], (4, 1]\}$
	$i \sim$ Layer depth	< 12
Pooling (P)	$(f,\ell) \sim (\text{Receptive field size, Strides})$	Square. $\in \{(5,3), (3,2), (2,2)\}\$ $\in \{(\infty,8], (8,4] \text{ and } (4,1]\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4] \text{ and } (4, 1]\}$
	$i \sim ext{Layer depth}$	< 12
Fully Connected (FC)	$n \sim \text{\# consecutive FC layers}$	< 3
	$d\sim$ # neurons	$\in \{512, 256, 128\}$
Termination State	$s \sim$ Previous State	
Termination State	$t \sim ext{Type}$	Global Avg. Pooling/Softmax

Layer Type	Layer Parameters	Parameter Values
	$i \sim \text{Layer depth}$	< 12
	$f \sim$ Receptive field size	Square. $\in \{1, 3, 5\}$
Convolution (C)	$\ell \sim \text{Stride}$	Square. Always equal to 1
	$d\sim$ # receptive fields	$\in \{64, 128, 256, 512\}$
	$n \sim \text{Representation size}$	$\in \{(\infty, 8], (8, 4], (4, 1]\}$
	$i \sim$ Layer depth	< 12
Pooling (P)	$(f,\ell) \sim (\text{Receptive field size, Strides})$	Square. $\in \{(5,3), (3,2), (2,2)\}$ $\in \{(\infty,8], (8,4] \text{ and } (4,1]\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4] \text{ and } (4, 1]\}$
	$i \sim ext{Layer depth}$	< 12
Fully Connected (FC)	$n \sim$ # consecutive FC layers	< 3
	$d\sim$ # neurons	$\in \{512, 256, 128\}$
Termination State	$s \sim$ Previous State	
Termination State	$t \sim \text{Type}$	Global Avg. Pooling/Softmax

Layer Type	Layer Parameters	Parameter Values
	$i \sim$ Layer depth	< 12
	$f \sim$ Receptive field size	Square. $\in \{1,3,5\}$
Convolution (C)	$\ell \sim$ Stride	Square. Always equal to 1
	$d\sim$ # receptive fields	$\in \{64, 128, 256, 512\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4], (4, 1]\}$
	$i \sim$ Layer depth	< 12
Pooling (P)	$(f,\ell) \sim$ (Receptive field size, Strides)	Square. $\in \{(5,3), (3,2), (2,2)\}\$ $\in \{(\infty,8], (8,4] \text{ and } (4,1]\}$
	$n \sim$ Representation size	$\in \{(\infty, 8], (8, 4] \text{ and } (4, 1]\}$
	$i \sim ext{Layer depth}$	< 12
Fully Connected (FC)	$n \sim$ # consecutive FC layers	< 3
	$d\sim$ # neurons	$\in \{512, 256, 128\}$
Termination State	$s \sim$ Previous State	
Termination State	$t \sim ext{Type}$	Global Avg. Pooling/Softmax

Convolution → Any Other Layer

- Convolution → Any Other Layer
- Pooling → Any Other Layer / Pooling

- Convolution → Any Other Layer
- Pooling → Any Other Layer / Pooling
- Any Layer → Fully Connected
 - if representation size less than 8

- Convolution → Any Other Layer
- Pooling → Any Other Layer / Pooling
- Any Layer → Fully Connected
 - if representation size less than 8
- Any Layer → Termination

MNIST

- Hand Written Digits
- 60,000 Training Examples
- 10,000 Testing Examples
- 10 classes

CIFAR-10

- Tiny Images
- 50,000 Training Examples
- 10,000 Testing Examples
- 10 classes

SVHN

- Street View House Digits
- 73257 Training Examples
- 26032 Testing Examples
- 531131 'Extra' Examples
- 10 classes

Hardware

- ~10 GPU's
 - Mostly 2015 Titan Xs
 - Some GTX 1080s
- Each experiment took ~10 days
 - Roughly 100 GPUdays

Comparison Against Models with similar design modules:

Method	CIFAR-10	SVHN	MNIST	CIFAR-100
Maxout (Goodfellow et al., 2013)	9.38	2.47	0.45	38.57
NIN (Lin et al., 2013)	8.81	2.35	0.47	35.68
FitNet (Romero et al., 2014)	8.39	2.42	0.51	35.04
HighWay (Srivastava et al., 2015)	7.72	-	-	-
VGGnet (Simonyan & Zisserman, 2014)	7.25	-	-	_
All-CNN (Springenberg et al., 2014)	7.25	-	_	33.71
MetaQNN (ensemble)	7.32	2.06	0.32	_
MetaQNN (top model)	6.92	2.28	0.44	27.14*

Comparison Against Models with similar design modules:

Method	CIFAR-10	SVHN	MNIST	CIFAR-100
Maxout (Goodfellow et al., 2013)	9.38	2.47	0.45	38.57
NIN (Lin et al., 2013)	8.81	2.35	0.47	35.68
FitNet (Romero et al., 2014)	8.39	2.42	0.51	35.04
HighWay (Srivastava et al., 2015)	7.72	_	-	-
VGGnet (Simonyan & Zisserman, 2014)	7.25	-	-	_
All-CNN (Springenberg et al., 2014)	7.25	-	-	33.71
MetaQNN (ensemble)	7.32	2.06	0.32	-
MetaQNN (top model)	6.92	2.28	0.44	27.14*

Comparison Against more complex modules:

Method	CIFAR-10	SVHN	MNIST	CIFAR-100
DropConnect (Wan et al., 2013)	9.32	1.94	0.57	-
DSN (Lee et al., 2015)	8.22	1.92	0.39	34.57
R-CNN (Liang & Hu, 2015)	7.72	1.77	0.31	31.75
MetaQNN (ensemble)	7.32	2.06	0.32	_
MetaQNN (top model)	6.92	2.28	0.44	27.14*
Resnet(110) (He et al., 2015)	6.61	_	-	_
Resnet(1001) (He et al., 2016)	4.62	-	-	22.71
ELU (Clevert et al., 2015)	6.55	_	-	24.28
Tree+Max-Avg (Lee et al., 2016)	6.05	1.69	0.31	32.37

Meta-Modeling Comparison on CIFAR-10

Method	Test Error on CIFAR-10	# Samples	Estimated Computation (GPU-Days)
MetaQNN (Ours)	6.92	2,700	100
Neural Architecture Search (Zoph et al., 2016)	3.65	12,800	10,000
Large Scale Evolution (Real et al., 2017)	5.4	-	2,600
Bayesian Optimization (Snoek et al., 2012)	9.5	50	-

Updated Results:

Different Model Depths Don't Train Equally

Model Depth	20 Epoch Accuracy	300 Epoch Accuracy
9	84.78	93.08
15	81.2	94.7

Updated Results:

Different Model Depths Don't Train Equally

Model Depth	20 Epoch Accuracy	300 Epoch Accuracy
9	84.78	93.08
15	81.2	94.7

Method	CIFAR-10	Γ
DropConnect (Wan et al., 2013)	9.32	Ī
DSN (Lee et al., 2015)	8.22	
R-CNN (Liang & Hu, 2015)	7.72	
MetaQNN (ensemble)	7.32	
MetaQNN (top model)	6.92	5.3
Resnet(110) (He et al., 2015)	6.61	
Resnet(1001) (He et al., 2016)	4.62	
ELU (Clevert et al., 2015)	6.55	
Tree+Max-Avg (Lee et al., 2016)	6.05	

Updated Results:

Different Model Depths Don't Train Equally

Method	Test Error on CIFAR-10	# Samples	Estimated Computation (GPU-Days)
MetaQNN (Ours)	5.3	2,700	100
Neural Architecture Search (Zoph et al., 2016)	3.65	12,800	10,000
Large Scale Evolution (Real et al., 2017)	5.4	-	2,600
Bayesian Optimization (Snoek et al., 2012)	9.5	50	-

Q-Value Analysis

MetaQNN Stability

Outline

- 1. Reinforcement Learning Background
- Modeling Architecture Selection as a Markov Decision Process
- 3. Results with Q-Learning
- 4. Accelerating Architecture Selection with Simple Early Stopping Algorithms

Meta-Modeling Comparison on CIFAR-10

Method	Test Error on CIFAR-10	# Samples	Estimated Computation (GPU-Days)
MetaQNN (Ours)	6.92	2,700	100
Neural Architecture Search (Zoph et al., 2016)	3.65	12,800	10,000
Large Scale Evolution (Real et al., 2017)	5.4	-	2,600
Bayesian Optimization (Snoek et al., 2012)	9.5	50	-

Early Stopping

 Humans are pretty good at recognizing suboptimal training configurations

Early Stopping

 Humans are pretty good at recognizing suboptimal training configurations

 Use a simple model to predict final accuracy given a partially observed learning curve

 Use a simple model to predict final accuracy given a partially observed learning curve

- Use a simple model to predict final accuracy given a partially observed learning curve
- Use performance prediction to terminate suboptimal configurations

- Use a simple model to predict final accuracy given a partially observed learning curve
- Use performance prediction to terminate suboptimal configurations

Performance Prediction Model

- Features:
 - $y_{1...t}$ Partially observed learning curves
 - $\mathcal{X}f$ Model features, e.g. # layers, # weights, etc.
- Target
 - $-y_T$ Final Accuracy
- Works for both hyperparameter optimization and meta-modeling

Meta-Modeling Example (CIFAR-10)

Meta-Modeling Example (CIFAR-10)

- 100 training examples
- 25% learning curve observed

- MetaQNN Cifar10/SVHN
 - Vary Architectures

- MetaQNN Cifar10/SVHN
 - Vary Architectures
- Resnets Cifar10
 - Similar search space to Neural Architecture Search

- MetaQNN Cifar10/SVHN
 - Vary Architectures
- Resnets Cifar10
 - Similar search space to Neural Architecture Search
- Small Neural Network

 Cifar10/SVHN
 - Vary optimization hyperparameters, e.g. learning rate, # learning rate decay steps, per layer L2 loss weight, response normalization scale and power

Experiments

- MetaQNN Cifar10/SVHN
 - Vary Architectures
- Resnets Cifar10
 - Similar search space to Neural Architecture Search
- Small Neural Network

 Cifar10/SVHN
 - Vary optimization hyperparameters, e.g. learning rate, # learning rate decay steps, per layer L2 loss weight, response normalization scale and power
- AlexNet 10% ImageNet
 - Vary learning rate and # learning rate decay steps

LCE: Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. IJCAI, 2015

BNN: Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction with bayesian neural networks. International Conference on Learning Representations, 17, 2017.

LCE: Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. IJCAI, 2015

BNN: Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction with bayesian neural networks. International Conference on Learning Representations, 17, 2017.

LCE: Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. IJCAI, 2015

BNN: Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction with bayesian neural networks.
International Conference on Learning Representations, 17, 2017.

LCE: Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. IJCAI, 2015

BNN: Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction with bayesian neural networks. International Conference on Learning Representations, 17, 2017.

1. Given performance prediction model

$$\hat{y}_T(t) = f(y_{1\dots t}, x_f)$$

1. Given performance prediction model

$$\hat{y}_T(t) = f(y_{1\dots t}, x_f)$$

2. Assume errors are zero-mean Gaussian conditioned on t

$$\hat{y}_T(t) - y_T \sim N(0, \sigma_t)$$

1. Given performance prediction model

$$\hat{y}_T(t) = f(y_{1\dots t}, x_f)$$

2. Assume errors are zero-mean Gaussian conditioned on t

$$\hat{y}_T(t) - y_T \sim N(0, \sigma_t)$$

3. Estimate σ_t empirically from training set using LOOCV

1. Given performance prediction model

$$\hat{y}_T(t) = f(y_{1\dots t}, x_f)$$

2. Assume errors are zero-mean Gaussian conditioned on t

$$\hat{y}_T(t) - y_T \sim N(0, \sigma_t)$$

- 3. Estimate σ_t empirically from training set using LOOCV
- 4. Define probability of improvement,

$$p(\hat{y}_T(t) < y_{BEST}) = 1 - \phi(y_{BEST}; \hat{y}_T(t), \sigma_t)$$

where $\phi(\cdot; \mu, \sigma_t)$ is the CDF of $N(\mu, \sigma_t)$

1. Given performance prediction model

$$\hat{y}_T(t) = f(y_{1\dots t}, x_f)$$

2. Assume errors are zero-mean Gaussian conditioned on t

$$\hat{y}_T(t) - y_T \sim N(0, \sigma_t)$$

- 3. Estimate σ_t empirically from training set using LOOCV
- 4. Define probability of improvement,

$$p(\hat{y}_T(t) < y_{BEST}) = 1 - \phi(y_{BEST}; \hat{y}_T(t), \sigma_t)$$

where $\phi(\cdot; \mu, \sigma_t)$ is the CDF of $N(\mu, \sigma_t)$

5. Define acceptance probability threshold Δ such that training is terminated at time-step t if

$$p(\hat{y}_T(t) < y_{BEST}) > \Delta$$

Early Stopping Results

- X ~ On average does not recover best model
- ▲ ~ On average recovers best model
- δ ~ Termination rule $p(\hat{y}_T(t) < y_{BEST} \delta) > \Delta$
- Top 10 ~ Termination rule $p(\hat{y}_T(t) < y_{10^{th} BEST}) > \Delta$

Summary

Designing neural network architectures using reinforcement learning [1]

Practical Neural Network Performance Prediction for Early Stopping [2]

Contact: bowen@mit.edu

Slides: bowenbaker.github.io (check back later today)

MetaQNN Code: Released by end of week

- 1. Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. "Designing neural network architectures using reinforcement learning." *International Conference on Learning Representations*, 2017.
- 2. Bowen Baker*, Otkrist Gupta*, Ramesh Raskar, and Nikhil Naik. "Practical Neural Network Performance Prediction for Early Stopping." *Under Submission*, 2017.

Appendix

Exploration Distributions

Transferability

 Top model found in CIFAR-10 experiment trained for other tasks

Dataset	CIFAR-100	SVHN	MNIST
Training from scratch	27.14	2.48	0.80
Finetuning	34.93	4.00	0.81
State-of-the-art	24.28 (Clevert et al., 2015)	1.69 (Lee et al., 2016)	0.31 (Lee et al., 2016)

MNIST t-SNE

MNIST Exploration Distribution

MNIST Q-Value Analysis

Q-Value Analysis

Top Models (CIFAR-10)

Model Architecture	Test Error (%)	# Params (10 ⁶)
[C(512,5,1), C(256,3,1), C(256,5,1), C(256,3,1), P(5,3), C(512,3,1),	6.92	11.18
C(512,5,1), P(2,2), SM(10)]		
[C(128,1,1), C(512,3,1), C(64,1,1), C(128,3,1), P(2,2), C(256,3,1),	8.78	2.17
P(2,2), C(512,3,1), P(3,2), SM(10)]		
[C(128,3,1), C(128,1,1), C(512,5,1), P(2,2), C(128,3,1), P(2,2),	8.88	2.42
C(64,3,1), C(64,5,1), SM(10)]		
[C(256,3,1), C(256,3,1), P(5,3), C(256,1,1), C(128,3,1), P(2,2),	9.24	1.10
C(128,3,1), SM(10)]		
[C(128,5,1), C(512,3,1), P(2,2), C(128,1,1), C(128,5,1), P(3,2),	11.63	1.66
C(512,3,1), SM(10)]		

Top Models (SVHN)

Model Architecture	Test Error (%)	# Params (10 ⁶)
[C(128,3,1), P(2,2), C(64,5,1), C(512,5,1), C(256,3,1), C(512,3,1),	2.24	9.81
P(2,2), C(512,3,1), C(256,5,1), C(256,3,1), C(128,5,1), C(64,3,1),		
SM(10)]		
[C(128,1,1), C(256,5,1), C(128,5,1), P(2,2), C(256,5,1), C(256,1,1),	2.28	10.38
C(256,3,1), C(256,3,1), C(256,5,1), C(512,5,1), C(256,3,1),		
C(128,3,1), SM(10)]		
[C(128,5,1), C(128,3,1), C(64,5,1), P(5,3), C(128,3,1), C(512,5,1),	2.32	6.83
C(256,5,1), C(128,5,1), C(128,5,1), C(128,3,1), SM(10)]		
[C(128,1,1), C(256,5,1), C(128,5,1), C(256,3,1), C(256,5,1), P(2,2),	2.35	6.99
C(128,1,1), C(512,3,1), C(256,5,1), P(2,2), C(64,5,1), C(64,1,1),		
SM(10)]		
[C(128,1,1), C(256,5,1), C(128,5,1), C(256,5,1), C(256,5,1),	2.36	10.05
C(256,1,1), P(3,2), C(128,1,1), C(256,5,1), C(512,5,1), C(256,3,1),		
C(128,3,1), SM(10)]		

Top Models (MNIST)

Model Architecture	Test Error (%)	# Params (10 ⁶)
[C(64,1,1), C(256,3,1), P(2,2), C(512,3,1), C(256,1,1), P(5,3),	0.35	5.59
C(256,3,1), C(512,3,1), FC(512), SM(10)]		
[C(128,3,1), C(64,1,1), C(64,3,1), C(64,5,1), P(2,2), C(128,3,1), P(3,2),	0.38	7.43
C(512,3,1), FC(512), FC(128), SM(10)]		
[C(512,1,1), C(128,3,1), C(128,5,1), C(64,1,1), C(256,5,1), C(64,1,1),	0.40	8.28
P(5,3), C(512,1,1), C(512,3,1), C(256,3,1), C(256,5,1), C(256,5,1),		
SM(10)]		
[C(64,3,1), C(128,3,1), C(512,1,1), C(256,1,1), C(256,5,1), C(128,3,1),	0.41	6.27
P(5,3), C(512,1,1), C(512,3,1), C(128,5,1), SM(10)]		
[C(64,3,1), C(128,1,1), P(2,2), C(256,3,1), C(128,5,1), C(64,1,1),	0.43	8.10
C(512,5,1), C(128,5,1), C(64,1,1), C(512,5,1), C(256,5,1), C(64,5,1),		
SM(10)]		

Top Model Cifar-10 (Updated Results)

```
[C(64,3,1), C(256,3,1), D(1,9), C(512,3,1), C(64,3,1), D(2,9), C(128,5,1), P(2,2), D(3,9), C(512,5,1), P(2,2), D(4,9), C(128,5,1), C(256,5,1), D(5,9), C(512,3,1), C(64,5,1), D(6,9), P(2,2), C(512,1,1), D(7,9), FC(128), D(8,9), SM(10)]
```

Representation Size

Q-Learning

 $Q^*(s,u)$ -- Denotes the expected reward when following an optimal policy after taking action u at state s

Q-Learning

$$Q^*(s_i, u) = \mathbb{E}\left[r + \gamma \max_{u' \in \mathcal{U}(s_j)} Q^*(s_j, u')\right]$$

 γ -- Discount Factor

r -- Reward received from the (s_i,u,s_j) transition

Q-Learning

$$Q^*(s_i, u) = \mathbb{E}\left[r + \gamma \max_{u' \in \mathcal{U}(s_j)} Q^*(s_j, u')\right]$$

$$Q_{t+1}(s_i, u) = (1 - \alpha)Q_t(s_i, u) + \alpha \left[r_t + \gamma \max_{u' \in \mathcal{U}(s_j)} Q_t(s_j, u') \right]$$