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• Neural	network	design	is	still	hand	crafted.
• Despite	the	wide	usage	of	a	few	main	
networks,	we	may	want	networks	specialized	
for	specific	tasks.

• We	may	want	more	than	1	specialized	model,	
e.g.	for	the	ensembling purposes.	



Automating	Tasks	With	Reinforcement	
Learning
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• C(64,3,1)	– Convolutional	Layer	with	64	learnable	
kernels,	3x3	kernel	size,	and	stride	of	1

• P(2,2)	– Max	Pooling	Layer	with	2x2	kernel	size	
and	stride	2

• G	– Termination	State	(e.g.	Softmax)
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Q-Learning

Q⇤(s, u) -- Denotes	the	expected	reward	when	
following	an	optimal	policy	after	
taking	action	u at	state	s
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Q-Value	Update	(Example)
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Action	Space

• Convolution	→	Any	Other	Layer
• Pooling	→	Any	Other	Layer	/	Pooling
• Any	Layer	→	Fully	Connected	
– if	representation	size	less	than	8

• Any	Layer	→	Termination



Experiments

MNIST CIFAR-10 SVHN

• Hand	Written	Digits
• 60,000	Training	Examples
• 10,000	Testing	Examples
• 10	classes

• Tiny	Images
• 50,000	Training	Examples
• 10,000	Testing	Examples
• 10	classes

• Street	View	House	Digits
• 73257	Training	Examples
• 26032	Testing	Examples
• 531131	‘Extra’	Examples
• 10	classes



Hardware

• ~10	GPU’s
–Mostly	2015	Titan	Xs
– Some	GTX	1080s

• Each	experiment	took	~10	days
– Roughly	100	GPUdays
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Comparison	Against	more	complex	modules:



Meta-Modeling	Comparison	
on	CIFAR-10

Method Test	Error	on	
CIFAR-10

#	Samples Estimated	Computation	
(GPU-Days)

MetaQNN (Ours) 6.92 2,700 100
Neural Architecture	
Search	(Zoph et	al.,	2016)

3.65 12,800 10,000

Large	Scale	Evolution	
(Real	et	al.,	2017)

5.4 - 2,600

Bayesian Optimization	
(Snoek et	al.,	2012)

9.5 50 -
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Updated	Results:
Different	Model	Depths	Don’t	Train	Equally

Method Test	Error	on	
CIFAR-10

#	Samples Estimated	Computation	
(GPU-Days)

MetaQNN (Ours) 5.3 2,700 100
Neural Architecture	
Search	(Zoph et	al.,	2016)

3.65 12,800 10,000

Large	Scale	Evolution	
(Real	et	al.,	2017)

5.4 - 2,600

Bayesian Optimization	
(Snoek et	al.,	2012)

9.5 50 -



Q-Value	Analysis



MetaQNN Stability
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Early	Stopping	Using	Partially	
Observed	Learning	Curves

• Use	a	simple	model	to	predict	final	accuracy	
given	a	partially	observed	learning	curve

• Use	performance	prediction	to	terminate	sub-
optimal	configurations



Performance	Prediction	Model

• Features:	
– Partially	observed	learning	curves	
– Model	features,	e.g.	#	layers,	#	weights,	etc.

• Target
– Final	Accuracy

• Works	for	both	hyperparameter optimization	
and	meta-modeling

y1...t
xf

yT



Meta-Modeling	Example	
(CIFAR-10)

Partially	Observed	
Learning	Curves Target



Meta-Modeling	Example	
(CIFAR-10)

Partially	Observed	
Learning	Curves Target

• 100	training	examples
• 25%	learning	curve	observed
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Experiments

• MetaQNN – Cifar10/SVHN
– Vary	Architectures

• Resnets – Cifar10
– Similar	search	space	to	Neural	Architecture	Search

• Small	Neural	Network– Cifar10/SVHN
– Vary	optimization	hyperparameters,	e.g.	learning	
rate,	#	learning	rate	decay	steps,	per	layer	L2	loss	
weight,	response	normalization	scale	and	power

• AlexNet – 10%	ImageNet
– Vary	learning	rate	and	#	learning	rate	decay	steps



Performance	Prediction	Model

LCE:						Tobias	Domhan,	Jost Tobias	Springenberg,	and	Frank	Hutter.	Speeding	up	automatic	hyperparameter optimization	of	deep	neural	
networks	by	extrapolation	of	learning	curves.	IJCAI,	2015
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International	Conference	on	Learning	Representations,	17,	2017.
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Early	Stopping
1.	Given	performance	prediction	model	

2.	Assume	errors	are	zero-mean	Gaussian	conditioned	on	𝑡

3.	Estimate	𝜎) empirically	from	training	set	using	LOOCV
4.	Define	probability	of	improvement,	

where	ɸ(	·	;	μ, 𝜎))	is	the	CDF	of	𝑁(μ, 𝜎))
5.	Define	acceptance	probability	threshold	Δ such	that	training	is	
terminated	at	time-step	𝑡 if

𝑦"# 𝑡 = 𝑓 𝑦'…), 𝑥,

𝑦"# 𝑡 	− 𝑦#	~	𝑁(0, 𝜎))

𝑝(𝑦"# 𝑡 < 𝑦789#) = 1 − 	ɸ(𝑦789#; 𝑦"# 𝑡 , 𝜎))

𝑝(𝑦"# 𝑡 < 𝑦789#) > Δ



Early	Stopping	Results

X									~			On	average	does	not	recover	best	model
▲ ~			On	average	recovers	best	model
ẟ ~			Termination	rule
Top	10	~			Termination	rule	

𝑝(𝑦"# 𝑡 < 𝑦789# 	− ẟ) > Δ
𝑝(𝑦"# 𝑡 < 𝑦'?@A	789#) > Δ



Summary

1. Bowen	Baker,	Otkrist Gupta,	Nikhil	Naik,	and	Ramesh	Raskar.	“Designing	neural	network	architectures	using	reinforcement	learning.”	
International	Conference	on	Learning	Representations,	2017.

2. Bowen	Baker*,	Otkrist Gupta*,	Ramesh	Raskar,	and	Nikhil	Naik.	"Practical	Neural	Network	Performance	Prediction	for	Early	Stopping.”	
Under	Submission,	2017.

Designing	neural	network	architectures	
using	reinforcement	learning	[1]

Contact:	bowen@mit.edu
Slides:	bowenbaker.github.io (check	back	later	today)
MetaQNN Code: Released	by	end	of	week

Practical	Neural	Network	Performance	
Prediction	for	Early	Stopping	[2]
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Exploration	Distributions



Transferability

• Top	model	found	in	CIFAR-10	experiment	
trained	for	other	tasks	



MNIST	t-SNE



MNIST	Exploration	Distribution



MNIST	Q-Value	Analysis
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Top	Models	(CIFAR-10)
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Top	Models	(MNIST)



Top	Model	Cifar-10	(Updated	Results)

[C(64,3,1), C(256,3,1), D(1,9), C(512,3,1), C(64,3,1), 
D(2,9), C(128,5,1), P(2,2), D(3,9), C(512,5,1), P(2,2), 
D(4,9), C(128,5,1), C(256,5,1), D(5,9), C(512,3,1), 
C(64,5,1), D(6,9), P(2,2), C(512,1,1), D(7,9), FC(128), 
D(8,9), SM(10)]



Representation	Size

(a) (b) (c)
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