
Practical	Neural	Network	Design	
Using	Reinforcement	Learning

Bowen	Baker
Media	Lab

bowen@mit.edu

Co-authors	

Otkrist Gupta
MIT	Media	Lab

Nikhil	Naik
Harvard

Ramesh	Raskar
MIT	Media	Lab

Motivation

• Neural	network	design	is	still	hand	crafted.

Motivation

• Neural	network	design	is	still	hand	crafted.
• Despite	the	wide	usage	of	a	few	main	
networks,	we	may	want	networks	specialized	
for	specific	tasks.

Motivation

• Neural	network	design	is	still	hand	crafted.
• Despite	the	wide	usage	of	a	few	main	
networks,	we	may	want	networks	specialized	
for	specific	tasks.

• We	may	want	more	than	1	specialized	model,	
e.g.	for	the	ensembling purposes.	

Automating	Tasks	With	Reinforcement	
Learning

Outline

1. Modeling	Architecture	Selection	as	a	Markov	
Decision	Process

2. Reinforcement	Learning	Background
3. Results	with	Q-Learning
4. Accelerating	Architecture	Selection	with	

Simple	Early	Stopping	Algorithms

Modeling	Architecture	Selection	as	a	
Markov	Decision	Process

• C(64,3,1)	– Convolutional	Layer	with	64	learnable	
kernels,	3x3	kernel	size,	and	stride	of	1

Modeling	Architecture	Selection	as	a	
Markov	Decision	Process

• C(64,3,1)	– Convolutional	Layer	with	64	learnable	
kernels,	3x3	kernel	size,	and	stride	of	1

• P(2,2)	– Max	Pooling	Layer	with	2x2	kernel	size	
and	stride	2

Modeling	Architecture	Selection	as	a	
Markov	Decision	Process

• C(64,3,1)	– Convolutional	Layer	with	64	learnable	
kernels,	3x3	kernel	size,	and	stride	of	1

• P(2,2)	– Max	Pooling	Layer	with	2x2	kernel	size	
and	stride	2

• G	– Termination	State	(e.g.	Softmax)

Modeling	Architecture	Selection	as	a	
Markov	Decision	Process

Q-Learning

Q⇤(s, u) -- Denotes	the	expected	reward	when	
following	an	optimal	policy	after	
taking	action	u at	state	s

Q-Learning

Q⇤
(si, u) = E


r + � max

u02U(sj)
Q⇤

(sj , u
0
)

�

-- Discount	Factor

-- Reward	received	from	
the																						transition(si, u, sj)

Q-Learning

Q⇤
(si, u) = E


r + � max

u02U(sj)
Q⇤

(sj , u
0
)

�

Qt+1(si, u) = (1� ↵)Qt(si, u) + ↵


rt + � max

u02U(sj)
Qt(sj , u

0
)

�

Q-Value	Update	(Example)

Q-Value	Update	(Example)

0.5

0.5

0.5

0.5 0.5

0.5

0.5

0.5

0.50.5

Q-Value	Update	(Example)

0.5

0.5

0.5

0.5 0.5

0.5

0.5

0.5

0.50.5

Q-Value	Update	(Example)

0.5

0.5

0.5

0.5 0.5

0.5

0.5

0.5

0.50.5

0.90

Q-Value	Update	(Example)

0.5

0.5

0.5

0.5 0.5

0.5

0.5

0.5

0.50.5

0.90

Qt+1(si, u) = (1� ↵)Qt(si, u) + ↵


rt + � max

u02U(sj)
Qt(sj , u

0
)

�
, � = 1, ↵ = 0.1

Q-Value	Update	(Example)

0.5

0.5

0.5

0.5 0.9	*	0.5	+	0.1	*	0.9		=	.54	

0.5

0.5

0.5

0.50.5

0.90

Qt+1(si, u) = (1� ↵)Qt(si, u) + ↵


rt + � max

u02U(sj)
Qt(sj , u

0
)

�
, � = 1, ↵ = 0.1

Q-Value	Update	(Example)

0.5

0.5

0.5

0.5 0.54	

0.5

0.5

0.5

0.5040.5

0.90

Qt+1(si, u) = (1� ↵)Qt(si, u) + ↵


rt + � max

u02U(sj)
Qt(sj , u

0
)

�
, � = 1, ↵ = 0.1

0.9	*	0.5	+	
0.1	*	0.54	=

Q-Value	Update	(Example)

0.5004

0.5

0.5

0.5 0.54

0.5

0.5

0.5

0.5040.5

0.90

Qt+1(si, u) = (1� ↵)Qt(si, u) + ↵


rt + � max

u02U(sj)
Qt(sj , u

0
)

�
, � = 1, ↵ = 0.1

0.9	*	0.5	+	
0.1	*	0.504	=

MetaQNN

MetaQNN

MetaQNN

Sampling	Networks
Epsilon-Greedy	Exploration:
– State	s corresponds	the	last	layer	chosen
– Action	u corresponds	to	the	next	layer	chosen

u =

(
Uniform[U(s)] with probability ✏

argmaxu02U(s)[Q(s, u0
)] with probability 1� ✏

Sampling	Networks
Epsilon-Greedy	Exploration:
– State	s corresponds	the	last	layer	chosen
– Action	u corresponds	to	the	next	layer	chosen

u =

(
Uniform[U(s)] with probability ✏

argmaxu02U(s)[Q(s, u0
)] with probability 1� ✏

State	Space

State	Space

State	Space

State	Space

State	Space

State	Space

State	Space

State	Space

State	Space

Action	Space

• Convolution	→	Any	Other	Layer

Action	Space

• Convolution	→	Any	Other	Layer
• Pooling	→	Any	Other	Layer	/	Pooling

Action	Space

• Convolution	→	Any	Other	Layer
• Pooling	→	Any	Other	Layer	/	Pooling
• Any	Layer	→	Fully	Connected	
– if	representation	size	less	than	8

Action	Space

• Convolution	→	Any	Other	Layer
• Pooling	→	Any	Other	Layer	/	Pooling
• Any	Layer	→	Fully	Connected	
– if	representation	size	less	than	8

• Any	Layer	→	Termination

Experiments

MNIST CIFAR-10 SVHN

• Hand	Written	Digits
• 60,000	Training	Examples
• 10,000	Testing	Examples
• 10	classes

• Tiny	Images
• 50,000	Training	Examples
• 10,000	Testing	Examples
• 10	classes

• Street	View	House	Digits
• 73257	Training	Examples
• 26032	Testing	Examples
• 531131	‘Extra’	Examples
• 10	classes

Hardware

• ~10	GPU’s
–Mostly	2015	Titan	Xs
– Some	GTX	1080s

• Each	experiment	took	~10	days
– Roughly	100	GPUdays

Results

Results

Results
Comparison	Against	Models	with	similar	design	modules:

Results
Comparison	Against	Models	with	similar	design	modules:

Comparison	Against	more	complex	modules:

Meta-Modeling	Comparison	
on	CIFAR-10

Method Test	Error	on	
CIFAR-10

#	Samples Estimated	Computation	
(GPU-Days)

MetaQNN (Ours) 6.92 2,700 100
Neural Architecture	
Search	(Zoph et	al.,	2016)

3.65 12,800 10,000

Large	Scale	Evolution	
(Real	et	al.,	2017)

5.4 - 2,600

Bayesian Optimization	
(Snoek et	al.,	2012)

9.5 50 -

Updated	Results:
Different	Model	Depths	Don’t	Train	Equally

Model	Depth 20	Epoch Accuracy 300	Epoch	Accuracy

9 84.78 93.08

15 81.2 94.7

Updated	Results:
Different	Model	Depths	Don’t	Train	Equally

Model	
Depth

20	Epoch
Accuracy

300	Epoch	
Accuracy

9 84.78 93.08

15 81.2 94.7

5.3

Updated	Results:
Different	Model	Depths	Don’t	Train	Equally

Method Test	Error	on	
CIFAR-10

#	Samples Estimated	Computation	
(GPU-Days)

MetaQNN (Ours) 5.3 2,700 100
Neural Architecture	
Search	(Zoph et	al.,	2016)

3.65 12,800 10,000

Large	Scale	Evolution	
(Real	et	al.,	2017)

5.4 - 2,600

Bayesian Optimization	
(Snoek et	al.,	2012)

9.5 50 -

Q-Value	Analysis

MetaQNN Stability

Why	Does	It	Work?

Why	Does	It	Work?

Why	Does	It	Work?

Why	Does	It	Work?

Why	Does	It	Work?

Why	Does	It	Work?

Outline

1. Reinforcement	Learning	Background
2. Modeling	Architecture	Selection	as	a	Markov	

Decision	Process
3. Results	with	Q-Learning
4. Accelerating	Architecture	Selection	with	

Simple	Early	Stopping	Algorithms

Meta-Modeling	Comparison	
on	CIFAR-10

Method Test	Error	on	
CIFAR-10

#	Samples Estimated	Computation	
(GPU-Days)

MetaQNN (Ours) 6.92 2,700 100
Neural Architecture	
Search	(Zoph et	al.,	2016)

3.65 12,800 10,000

Large	Scale	Evolution	
(Real	et	al.,	2017)

5.4 - 2,600

Bayesian Optimization	
(Snoek et	al.,	2012)

9.5 50 -

Early	Stopping

• Humans	are	pretty	good	at	recognizing	sub-
optimal	training	configurations

Early	Stopping

• Humans	are	pretty	good	at	recognizing	sub-
optimal	training	configurations

Early	Stopping	Using	Partially	
Observed	Learning	Curves

• Use	a	simple	model	to	predict	final	accuracy	
given	a	partially	observed	learning	curve

Early	Stopping	Using	Partially	
Observed	Learning	Curves

• Use	a	simple	model	to	predict	final	accuracy	
given	a	partially	observed	learning	curve

Partially	Observed	
Learning	Curves

Final	Accuracy

Early	Stopping	Using	Partially	
Observed	Learning	Curves

• Use	a	simple	model	to	predict	final	accuracy	
given	a	partially	observed	learning	curve

• Use	performance	prediction	to	terminate	sub-
optimal	configurations

Early	Stopping	Using	Partially	
Observed	Learning	Curves

• Use	a	simple	model	to	predict	final	accuracy	
given	a	partially	observed	learning	curve

• Use	performance	prediction	to	terminate	sub-
optimal	configurations

Performance	Prediction	Model

• Features:	
– Partially	observed	learning	curves	
– Model	features,	e.g.	#	layers,	#	weights,	etc.

• Target
– Final	Accuracy

• Works	for	both	hyperparameter optimization	
and	meta-modeling

y1...t
xf

yT

Meta-Modeling	Example	
(CIFAR-10)

Partially	Observed	
Learning	Curves Target

Meta-Modeling	Example	
(CIFAR-10)

Partially	Observed	
Learning	Curves Target

• 100	training	examples
• 25%	learning	curve	observed

Experiments

• MetaQNN – Cifar10/SVHN
– Vary	Architectures

Experiments

• MetaQNN – Cifar10/SVHN
– Vary	Architectures

• Resnets – Cifar10
– Similar	search	space	to	Neural	Architecture	Search

Experiments

• MetaQNN – Cifar10/SVHN
– Vary	Architectures

• Resnets – Cifar10
– Similar	search	space	to	Neural	Architecture	Search

• Small	Neural	Network– Cifar10/SVHN
– Vary	optimization	hyperparameters,	e.g.	learning	
rate,	#	learning	rate	decay	steps,	per	layer	L2	loss	
weight,	response	normalization	scale	and	power

Experiments

• MetaQNN – Cifar10/SVHN
– Vary	Architectures

• Resnets – Cifar10
– Similar	search	space	to	Neural	Architecture	Search

• Small	Neural	Network– Cifar10/SVHN
– Vary	optimization	hyperparameters,	e.g.	learning	
rate,	#	learning	rate	decay	steps,	per	layer	L2	loss	
weight,	response	normalization	scale	and	power

• AlexNet – 10%	ImageNet
– Vary	learning	rate	and	#	learning	rate	decay	steps

Performance	Prediction	Model

LCE:						Tobias	Domhan,	Jost Tobias	Springenberg,	and	Frank	Hutter.	Speeding	up	automatic	hyperparameter optimization	of	deep	neural	
networks	by	extrapolation	of	learning	curves.	IJCAI,	2015

BNN:	 Aaron	Klein,	Stefan	Falkner,	Jost Tobias	Springenberg,	and	Frank	Hutter.	Learning	curve	prediction	with	bayesian neural	networks.	
International	Conference	on	Learning	Representations,	17,	2017.

Performance	Prediction	Model

LCE:						Tobias	Domhan,	Jost Tobias	Springenberg,	and	Frank	Hutter.	Speeding	up	automatic	hyperparameter optimization	of	deep	neural	
networks	by	extrapolation	of	learning	curves.	IJCAI,	2015

BNN:	 Aaron	Klein,	Stefan	Falkner,	Jost Tobias	Springenberg,	and	Frank	Hutter.	Learning	curve	prediction	with	bayesian neural	networks.	
International	Conference	on	Learning	Representations,	17,	2017.

Performance	Prediction	Model

LCE:						Tobias	Domhan,	Jost Tobias	Springenberg,	and	Frank	Hutter.	Speeding	up	automatic	hyperparameter optimization	of	deep	neural	
networks	by	extrapolation	of	learning	curves.	IJCAI,	2015

BNN:	 Aaron	Klein,	Stefan	Falkner,	Jost Tobias	Springenberg,	and	Frank	Hutter.	Learning	curve	prediction	with	bayesian neural	networks.	
International	Conference	on	Learning	Representations,	17,	2017.

Performance	Prediction	Model

LCE:						Tobias	Domhan,	Jost Tobias	Springenberg,	and	Frank	Hutter.	Speeding	up	automatic	hyperparameter optimization	of	deep	neural	
networks	by	extrapolation	of	learning	curves.	IJCAI,	2015

BNN:	 Aaron	Klein,	Stefan	Falkner,	Jost Tobias	Springenberg,	and	Frank	Hutter.	Learning	curve	prediction	with	bayesian neural	networks.	
International	Conference	on	Learning	Representations,	17,	2017.

Early	Stopping
1.	Given	performance	prediction	model	

𝑦"# 𝑡 = 𝑓 𝑦'…), 𝑥,

Early	Stopping
1.	Given	performance	prediction	model	

2.	Assume	errors	are	zero-mean	Gaussian	conditioned	on	𝑡
𝑦"# 𝑡 = 𝑓 𝑦'…), 𝑥,

𝑦"# 𝑡 	− 𝑦#	~	𝑁(0, 𝜎))

Early	Stopping
1.	Given	performance	prediction	model	

2.	Assume	errors	are	zero-mean	Gaussian	conditioned	on	𝑡

3.	Estimate	𝜎) empirically	from	training	set	using	LOOCV

𝑦"# 𝑡 = 𝑓 𝑦'…), 𝑥,

𝑦"# 𝑡 	− 𝑦#	~	𝑁(0, 𝜎))

Early	Stopping
1.	Given	performance	prediction	model	

2.	Assume	errors	are	zero-mean	Gaussian	conditioned	on	𝑡

3.	Estimate	𝜎) empirically	from	training	set	using	LOOCV
4.	Define	probability	of	improvement,	

where	ɸ(·	;	μ, 𝜎))	is	the	CDF	of	𝑁(μ, 𝜎))

𝑦"# 𝑡 = 𝑓 𝑦'…), 𝑥,

𝑦"# 𝑡 	− 𝑦#	~	𝑁(0, 𝜎))

𝑝(𝑦"# 𝑡 < 𝑦789#) = 1 − 	ɸ(𝑦789#; 𝑦"# 𝑡 , 𝜎))

Early	Stopping
1.	Given	performance	prediction	model	

2.	Assume	errors	are	zero-mean	Gaussian	conditioned	on	𝑡

3.	Estimate	𝜎) empirically	from	training	set	using	LOOCV
4.	Define	probability	of	improvement,	

where	ɸ(·	;	μ, 𝜎))	is	the	CDF	of	𝑁(μ, 𝜎))
5.	Define	acceptance	probability	threshold	Δ such	that	training	is	
terminated	at	time-step	𝑡 if

𝑦"# 𝑡 = 𝑓 𝑦'…), 𝑥,

𝑦"# 𝑡 	− 𝑦#	~	𝑁(0, 𝜎))

𝑝(𝑦"# 𝑡 < 𝑦789#) = 1 − 	ɸ(𝑦789#; 𝑦"# 𝑡 , 𝜎))

𝑝(𝑦"# 𝑡 < 𝑦789#) > Δ

Early	Stopping	Results

X									~			On	average	does	not	recover	best	model
▲ ~			On	average	recovers	best	model
ẟ ~			Termination	rule
Top	10	~			Termination	rule	

𝑝(𝑦"# 𝑡 < 𝑦789# 	− ẟ) > Δ
𝑝(𝑦"# 𝑡 < 𝑦'?@A	789#) > Δ

Summary

1. Bowen	Baker,	Otkrist Gupta,	Nikhil	Naik,	and	Ramesh	Raskar.	“Designing	neural	network	architectures	using	reinforcement	learning.”	
International	Conference	on	Learning	Representations,	2017.

2. Bowen	Baker*,	Otkrist Gupta*,	Ramesh	Raskar,	and	Nikhil	Naik.	"Practical	Neural	Network	Performance	Prediction	for	Early	Stopping.”	
Under	Submission,	2017.

Designing	neural	network	architectures	
using	reinforcement	learning	[1]

Contact:	bowen@mit.edu
Slides:	bowenbaker.github.io (check	back	later	today)
MetaQNN Code: Released	by	end	of	week

Practical	Neural	Network	Performance	
Prediction	for	Early	Stopping	[2]

Appendix

Exploration	Distributions

Transferability

• Top	model	found	in	CIFAR-10	experiment	
trained	for	other	tasks	

MNIST	t-SNE

MNIST	Exploration	Distribution

MNIST	Q-Value	Analysis

Q-Value	Analysis

Top	Models	(CIFAR-10)

Top	Models	(SVHN)

Top	Models	(MNIST)

Top	Model	Cifar-10	(Updated	Results)

[C(64,3,1), C(256,3,1), D(1,9), C(512,3,1), C(64,3,1),
D(2,9), C(128,5,1), P(2,2), D(3,9), C(512,5,1), P(2,2),
D(4,9), C(128,5,1), C(256,5,1), D(5,9), C(512,3,1),
C(64,5,1), D(6,9), P(2,2), C(512,1,1), D(7,9), FC(128),
D(8,9), SM(10)]

Representation	Size

(a) (b) (c)

Q-Learning

Q⇤(s, u) -- Denotes	the	expected	reward	when	
following	an	optimal	policy	after	
taking	action	u at	state	s

Q-Learning

Q⇤
(si, u) = E


r + � max

u02U(sj)
Q⇤

(sj , u
0
)

�

-- Discount	Factor

-- Reward	received	from	
the																						transition(si, u, sj)

Q-Learning

Q⇤
(si, u) = E


r + � max

u02U(sj)
Q⇤

(sj , u
0
)

�

Qt+1(si, u) = (1� ↵)Qt(si, u) + ↵


rt + � max

u02U(sj)
Qt(sj , u

0
)

�

